Introducción

El 80386 consiste en una unidad central de proceso (CPU), una unidad de manejo de memoria (MMU) y una unidad de interfaz con el bus (BIU).

La CPU está compuesta por la unidad de ejecución y la unidad de instrucciones. La unidad de ejecución contiene los ocho registros de 32 bits de propósito general que se utilizan para el cálculo de direcciones y operaciones con datos y un barrel shifter de 64 bits que se utiliza para acelerar las operaciones de desplazamiento, rotación, multiplicación y división. Al contrario de los microprocesadores previos, la lógica de división y multiplicación utiliza un algoritmo de 1 bit por ciclo de reloj. El algoritmo de multiplicación termina la iteración cuando los bits más significativos del multiplicador son todos ceros, lo que permite que las multiplicaciones típicas de 32 bits se realicen en menos de un microsegundo.

La unidad de instrucción decodifica los códigos de operación (opcodes) de las instrucciones que se encuentran en una cola de instrucciones (cuya longitud es de 16 bytes) y los almacena en la cola de instrucciones decodificadas (hay espacio para tres instrucciones).
El sistema de control de la unidad de ejecución es el encargado de decodificar las instrucciones que le envía la cola y enviarle las órdenes a la unidad aritmética y lógica según una tabla que tiene almacenada en ROM llamada CROM (Control Read Only Memory).
La unidad de manejo de memoria (MMU) consiste en una unidad de segmentación (similar a la del 80286) y una unidad de paginado (nuevo en este microprocesador). La segmentación permite el manejo del espacio de direcciones lógicas agregando un componente de direccionamiento extra, que permite que el código y los datos se puedan reubicar fácilmente. El mecanismo de paginado opera por debajo y es transparente al proceso de segmentación, para permitir el manejo del espacio de direcciones físicas. Cada
segmento se divide en uno o más páginas de 4 kilobytes. Para implementar un sistema de memoria virtual (aquél donde el programa tiene un tamaño mayor que la memoria física y debe cargarse por partes (páginas) desde el disco rígido), el 80386 permite seguir ejecutando los programas después de haberse detectado fallos de segmentos o de páginas. Si una página determinada no se encuentra en memoria, el 80386 se lo indica al sistema operativo mediante la excepción 14, luego éste carga dicha página desde el disco y finalmente puede seguir ejecutando el programa, como si hubiera estado dicha página todo el tiempo. Como se puede observar, este proceso es transparente para la aplicación, por lo que el programador no debe preocuparse por cargar partes del código desde el disco ya que esto lo hace el sistema operativo con la ayuda del microprocesador.

La memoria se organiza en uno o más segmentos de longitud variable, con tamaño máximo de 4 gigabytes. Estos segmentos, como se vio en la explicación del 80286, tienen atributos asociados, que incluyen su ubicación, tamaño, tipo (pila, código o datos) y características de protección.

La unidad de segmentación provee cuatro niveles de protección para aislar y proteger aplicaciones y el sistema operativo. Este tipo de protección por hardware permite el diseño de sistemas con un alto grado de integridad.

El 80386 tiene dos modos de operación: modo de direccionamiento real (modo real), y modo de direccionamiento virtual protegido (modo protegido). En modo real el 80386 opera como un 8086 muy rápido, con extensiones de 32 bits si se desea. El modo real se requiere primariamente para preparar el procesador para que opere en modo protegido. El modo protegido provee el acceso al sofisticado manejo de memoria y paginado.
Dentro del modo protegido, el software puede realizar un cambio de tarea para entrar en tareas en modo 8086 virtual (V86 mode) (esto es nuevo con este microprocesador). Cada una de estas tareas se comporta como si fuera un 8086 el que lo está ejecutando, lo que permite ejecutar software de 8086 (un programa de aplicación o un sistema operativo). Las tareas en modo 8086 virtual pueden aislarse entre sí y del sistema operativo (que debe utilizar instrucciones del 80386), mediante el uso del paginado y el mapa de bits de permiso de entrada/salida (I/O Permission Bitmap).

Finalmente, para facilitar diseños de hardware de alto rendimiento, la interfaz con el bus del 80386 ofrece pipelining de direcciones, tamaño dinámico del ancho del bus de datos (puede tener 16 ó 32 bits según se desee en un determinado ciclo de bus) y señales de habilitación de bytes por cada byte del bus de datos.

Diagrama en bloques del 80386

 

Versiones del 80386

80386: En octubre de 1985 la empresa Intel lanzó el microprocesador 80386 original de 16 MHz, con una velocidad de ejecución de 6 millones de instrucciones por segundo y con 275.000
transistores. La primera empresa en realizar una computadora compatible com IBM PC AT basada en el 80386 fue Compaq con su Compaq Deskpro 386 al año siguiente.

386SX: Para facilitar la transición entre las computadoras de 16 bits basadas en el 80286, apareció en junio de 1988 el 80386 SX con bus de datos de 16 bits y 24 bits de direcciones (al igual que en el caso del 80286). Este microprocesador permitió el armado de computadoras en forma económica que pudieran correr programas de 32 bits. El 80386 original se le cambió de nombre: 80386 DX.

386SL: En 1990 Intel introdujo el miembro de alta integración de la familia 386: el 80386 SL con varias características extras (25 MHz, frecuencia reducida ó 0 MHz, interfaz para caché opcional externo de 16, 32 ó 64 KB, soporte de LIM 4.0 (memoria expandida) por hardware, generación y verificación de paridad, ancho de bus de datos de 8 ó 16 bits) que lo hacen ideal para equipos portátiles.

Regresar